## PHYTOECDYSTEROIDS FROM THE Silene GENUS

N. Z. Mamadalieva,<sup>1</sup> L. N. Zibareva,<sup>2</sup> R. Lafont,<sup>3</sup> L. Dainan,<sup>4</sup> and Z. Saatov<sup>1</sup>

Research results on the isolation and identification of ecdysteroids from plants of the Silene L. genus were presented.

Key words: phytoecdysteroids, distribution, isolation, Silene genus.

The genus *Silene* L. is a good source of new ecdysteroid analogs [1-5]. Species of this genus contain 59% of ecdysteroids. Ecdysteroids have been found by us in 115 species of *Silene* including in 75 species for the first time [6]. Of these, 26 species had a high content of them. Until now the chemical composition of these compounds has been determined in 23 *Silene* species including 12 investigated by us.

We established for the first time the ecdysteroid profile of the following species: *Silene antirrhina*, *S. chlolirifolia*, *S. cretica*, *S. disticha*, *S. echinata*, *S. italica*, *S. linicola*, *s. portensis*, *S. pseudotites*, *S. radicosa*, *S. regia*, *S. viridiflora* [4, 5, 7] using a developed detection method in seeds [8]. These data were subsequently confirmed by radioimmunoassay (Table 1). The studied species possess agonistic (ecdysteroid) activity but not one of them exhibited antagonistic activity. This confirms that they contain phytoecdysteroids.



**2:**  $R_1 = R_3 = R_4 = R_6 = H, R_2 = OH, R_5 = \beta$ -D-Glc **3:**  $R_1 = R_5 = R_6 = H, R_2 = \beta$ -D-Glc,  $R_3 = R_4 = OH$  **4:**  $R_1 = R_4 = R_6 = OH, R_2 = OAc, R_3 = H, R_5 = Ac$ **5:**  $R_1 = OAc, R_2 = R_4 = R_6 = OH, R_3 = H, R_5 = OAc$ 

UDC 581.3.82:547.926

<sup>1)</sup> S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences, Republic of Uzbekistan, Tashkent, fax (99871) 120 64 75; 2) Tomsk University Siberian Botanical Garden, Tomsk; 3) Universite Pierre et Marie Curie, Laboratoire d'Endocrinologie Moleculaire et Evolution, France; 4) Department of Biological Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter, UK. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 472-475, November-December, 2004. Original article submitted June 21, 2004.

| Plant species     | Growth phase | Plant part | CSP analysis | RIA DBL-1 | Biotest for agonists |
|-------------------|--------------|------------|--------------|-----------|----------------------|
| S. antirrhina     | Fr           | Fruit,     | 0.5          | 969       | +++                  |
|                   |              | seeds      | 0.1          | 87.2      | ++-                  |
| S. echinata       | Fl           | Flowers,   | 0.4          | 5972      | +++-                 |
|                   | Fr           | seeds      | 0.1          | 101.4     | ++-                  |
| S. viridiflora    | В            | Buds,      | 1.6          | 6582      | ++++-                |
|                   | Fr           | seeds      | 0.2          | 659       | +++                  |
| S. frivaldszkyana | Fl           | Flowers,   | 6.2          | 27592     | ++++-                |
|                   | Fr           | seeds      | 0.6          | 113.2     | +++                  |
| S. portensis      | Fl           | Flowers,   | 1.4          | 15312     | C+++-                |
|                   | Fr           | seeds      | 0.2          | 86.2      | ++-                  |
| S. linicola       | Fl           | A. part,   | 0.5          | 2000      | +++-                 |
|                   | Fr           | seeds      | 0.6          | 1485      | +++(+)-              |
| S. radicosa       | Fl           | Flowers    | 1.3          | 11393     | ++++-                |
| S. pseudotites    | E            | Leaves     | 0.6          | 27188     | +++-                 |
| S. italica        | Fl           | Flowers    | 1.3          | 12205     | ++++-                |
| S. cretica        | Fr           | Fruit,     | 0.4          | 1920      | +++-                 |
|                   |              | seeds      | 0.3          | 49.1      | ++-                  |
| S. disticha       | Fl           | Leaves,    | 0.4          | 2555      | C++-                 |
|                   | Fr           | seeds      | 0.3          | 109.5     | ++-                  |
| S. chlorifolia    | E            | Leaves     | 0.8          | 3020      | +++-                 |

TABLE 1. Analysis of Caryophyllaceae Plant Extracts for Ecdysteroid Content

B, budding; Fl, flowering; Fr, fruiting; E, end of vegetation; A. part, aerial part. CSP, chromatospectrophotometric method, % of dry material. RIA, radioimmunoassay,  $\mu$ g ecdysone equivalent/g. C, cytotoxic; -, inactive; +, undiluted extract active; (+), weakly active; ++, +++, ++++, active at 10-, 100-, and 1000-fold, respectively, dilution.

The main ecdysteroid components were identified in seven species (*S. antirrhina*, *S. chlorifolia*, *S. cretica*, *S. disticha*, *S. echinata*, *S. italica*, *S. portensis*) by HPLC using the UV spectra of the peaks. The absorption maximum is due to the presence of a conjugated ketone and occurs near 242-250 nm. Semipreparative HPLC over a  $C_{18}$  column was used to concentrate the pure compounds. The retention times of the resulting peaks compared with those of polypodine B (P<sub>B</sub>), 20-hydroxyecdysone (20E), 25*R*-inocosterone, 25*S*-inocosterone, 2-deoxy-20-hydroxyecdysone, and ecdysone and co-injection with the proposed ecdysteroid standards enabled the compounds to be identified on two analytical reversed-phase  $C_{18}$  and  $C_6$  columns (Table 2). The major components in each *Silene* species are 20E and P<sub>B</sub>. Ecdysteroids **1-5** were isolated for the first time. Glycosides are typically found for the *Silene* genus. For example, the series of glycosides sileneoside A, B, C, D, and E was found in *S. brachuica* [9-13], *S. nutans*, *S. scabrifolia*, *S. supina*, *S. viridiflora* [14, 15]; in *S. otites*, 20E 25-glycoside [3]. However, 2-deoxyecdysone 22*β*-D-glycoside and 2-deoxypolipodine B 3-O-*β*-D-glycoside were isolated for the first time. The presence in plants of the ecdysteroid glycosides indicates that they play an active role in metabolic processes [1].

## EXPERIMENTAL

Extracts were purified using Sep-Pac Vac 35-cc cartridges. A Gilson Model 811 HPLC chromatograph combined with a Gilson 160 detector and the Gilson Unipoint computer program were used for analysis. HPLC separation of the extracts was performed over Spherisorb 5 ODS-2 analytical columns with  $C_{18}$  and  $C_6$  (particle size 5 mm, 150 × 4.6 mm, Jones Chromatography).

| Ecdysteroid                                              | Formula                                         | Yield, % | Plant species  |
|----------------------------------------------------------|-------------------------------------------------|----------|----------------|
| 20-Hydroxyecdysone                                       | C <sub>27</sub> H <sub>44</sub> O <sub>7</sub>  | 0.071    | S. pseudotites |
|                                                          |                                                 | 0.367    | S. linicola    |
|                                                          |                                                 | 0.042    | S. radicosa    |
|                                                          |                                                 | 0.302    | S. regia       |
|                                                          |                                                 | 0.350    | S. viridiflora |
| Polipodine B                                             | $C_{27}H_{44}O_8$                               | 0.006    | S. pseudotites |
|                                                          |                                                 | 0.073    | S. linicola    |
|                                                          |                                                 | 0.007    | S. radicosa    |
|                                                          |                                                 | 0.021    | S. regia       |
|                                                          |                                                 | 0.250    | S. viridiflora |
| 25S-Inocosterone                                         | $C_{27}H_{44}O_7$                               | Tr.      | S. pseudotites |
|                                                          |                                                 | 0.012    | S. regia       |
| Ecdysone                                                 | $C_{27}H_{44}O_{6}$                             | 0.002    | S. pseudotites |
|                                                          |                                                 | 0.001    | S. linicola    |
| 2-Deoxyecdysone                                          | $C_{27}H_{44}O_5$                               | 0.165    | S. pseudotites |
| 2-Deoxy-20-hydroxyecdysone                               | $C_{27}H_{44}O_{6}$                             | 0.106    | S. pseudotites |
|                                                          |                                                 | 0.017    | S. linicola    |
|                                                          |                                                 | 0.200    | S. viridiflora |
| Ponasterone A                                            | $C_{27}H_{44}O_{6}$                             | Tr.      | **             |
| Sidisterone                                              | $C_{24}H_{32}O_{6}$                             | 0.001    | S. pseudotites |
| 2-Deoxyintegristerone A                                  | $C_{27}H_{44}O_7$                               | 0.001    | S. pseudotites |
| $(5\alpha$ -)-2-Deoxyintegristerone A                    | $C_{27}H_{44}O_7$                               | 0.001    | S. pseudotites |
| 2-Deoxy-21-hydroxyecdysone                               | $C_{27}H_{44}O_{6}$                             | 0.013    | S. pseudotites |
| Viticosterone E                                          | $C_{29}H_{46}O_8$                               | 0.001    | S. linicola    |
| Turkesterone                                             | $C_{27}H_{44}O_8$                               | 0.001    | S. linicola    |
| Integristerone A                                         | $C_{27}H_{44}O_8$                               | 0.002    | S. linicola    |
|                                                          |                                                 | 0.200    | S. viridiflora |
| Sileneoside A                                            | $C_{33}H_{54}O_{12}$                            | 0.080    | S. viridiflora |
| Sileneoside D                                            | C <sub>33</sub> H <sub>54</sub> O <sub>12</sub> | 0.100    | S. viridiflora |
| 26-Hydroxypolipodine B                                   | $C_{27}H_{44}O_9$                               | 0.035    | S. viridiflora |
| 2-Deoxy-20,26-dihydroxyecdysone (1)*                     | $C_{27}H_{44}O_7$                               | 0.003    | S. pseudotites |
| 2-Deoxyecdysone $22\beta$ -D-glycoside (2)*              | C <sub>33</sub> H <sub>54</sub> O <sub>10</sub> | 0.003    | S. pseudotites |
| 2-Deoxypolipodine B 3 $\beta$ -D-glycoside ( <b>3</b> )* | $C_{33}H_{54}O_{12}$                            | 0.003    | S. pseudotites |
| 20,26-Dihydroxyecdysone 3,22-diacetate (4)*              | $C_{31}H_{48}O_{10}$                            |          | S. viridiflora |
| 20,26-Dihydroxyecdysone 2,22-diacetate (5)*              | $C_{31}H_{48}O_{10}$                            |          | S. viridiflora |

TABLE 2. Phytoecdysteroids Isolated from Silene L. Species

\*Ecdysteroids isolated for the first time, \*\*detected in most species; Tr.: traces.

Radioimmunoassay and biotest  $B_{II}$  for the presence and determination of ecsdysteroid content in the plants were carried out at Exeter University (Exeter, Great Britain). IR spectra were recorded on a Perkin—Elmer 2000 FT-spectrometer. NMR spectra were recorded on JNM-4H-100, Bruker WP 200 SY, Bruker Avance DRX400, and Bruker AMX500 instruments at 27°C using standard Bruker microprograms. The solvents were  $C_5D_5N$ ,  $CD_3OD$ , and  $D_2O$  with hexamethyldisiloxane (HMDS), tetramethylsilane (TMS), and sodium [2,2,3,3-<sup>2</sup>H<sub>4</sub>]-3-(trimethylsilyl)propionate internal standards.

| C atom                | <sup>13</sup> C (4) | <sup>1</sup> H (4)        | <sup>13</sup> C (5) | <sup>1</sup> H (5)                        |
|-----------------------|---------------------|---------------------------|---------------------|-------------------------------------------|
| 1                     | 37.7                | 1.48, 1.99                | 37.7                | 1.53, 1.96                                |
| 2                     | -                   | 4.13 (m, $w_{1/2} = 22$ ) | -                   | 5.08 (m, $w_{1/2} = 22$ )                 |
| 3                     | 72.3                | 5.17 (m, $w_{1/2} = 8$ )  | 73.0                | 4.22 (m, $w_{1/2} = 8$ )                  |
| 4                     | -                   | 1.78, 1.85                | -                   | 1.80, 1.83                                |
| 5                     | 51.9                | 2.35 (dd, J = 4.2, 13.5)  | 51.5                | 2.41 (dd, 5.13)                           |
| 6                     | -                   | -                         | -                   | -                                         |
| 7                     | 122.4               | 5.98 (d, J = 2.5)         | 122.3               | 5.99 (d, J = 2.5)                         |
| 8                     | -                   | -                         | -                   | -                                         |
| 9                     | 35.0                | 3.11 (m, $w_{1/2} = 24$ ) | 35.1                | $3.18 \text{ (m, } w_{1/2} = 24 \text{)}$ |
| 10                    | 39.1                | -                         | 39.5                | -                                         |
| 11                    | -                   | 1.74, 1.86                | -                   | 1.73, 1.86                                |
| 12                    | 32.0                | 1.76, 1.96                | 32.3                | 1.76, 1.96                                |
| 13                    | 48.5                | -                         | 48.7                | -                                         |
| 14                    | 86.3                | -                         | 86.6                | -                                         |
| 15                    | 31.3                | 1.67, 2.06                | 31.6                | 1.67, 2.06                                |
| 16                    | 20.7                | 1.88, 1.76                | 21.4                | 1.88, 1.76                                |
| 17                    | 50.6                | 2.31 (t, J = 9.5)         | 50.6                | 2.31 (t, J = 9.5)                         |
| 18                    | 18.1                | 0.86 s                    | 18.2                | 0.86 s                                    |
| 19                    | 24.2                | 1.02 s                    | 24.1                | 1.02 s                                    |
| 20                    | 78.4                | -                         | 78.4                | -                                         |
| 21                    | 21.3                | 1.34 s                    | 21.5                | 1.34 s                                    |
| 22                    | 82.7                | 4.85 (dd, J = 10.5, 2)    | 81.4                | 4.85 (dd, J = 10.5, 2)                    |
| 23                    | -                   | 1.56, 1.76                | -                   | 1.56, 1.76                                |
| 24                    | 35.9                | 1.75, 1.46                | 35.9                | 1.75, 1.46                                |
| 25                    | 74.4                | -                         | 74.5                | -                                         |
| 26                    | 69.9                | 3.42 s                    | 69.8                | 3.42 s                                    |
| 27                    | 23.2                | 1.15 s                    | 23.1                | 1.15 s                                    |
| 2-CH <sub>3</sub> CO  | -                   | -                         | 22.1/175.0          | 2.127 s                                   |
| 3-CH <sub>3</sub> CO  | 21.7/175.1          | 2.176 s                   | -                   | -                                         |
| 22-CH <sub>3</sub> CO | 21.7/176.0          | 2.165 s                   | 21.9/176.1          | 2.167 s                                   |

TABLE 3. <sup>1</sup>H and <sup>13</sup>C NMR Chemical Shifts of 20,26-Dihydroxyecdysone 3,22-Diacetate (4) and 20,26-Dihydroxyecdysone 2,22-Diacetate (5) (D<sub>2</sub>O,  $\delta$ , ppm, J/Hz)

-, not determined

Mass spectra were recorded on Finnigan MAT-8200 and JEOL JMS-700 (desorption-chemical ionization) mass spectrometers using ammonia as a reagent. Certain mass spectra were obtained on a triple quadrupole (Quattro triple quadrupole) VG mass spectrometer with liquid secondary-ion ionization (LSIMS) using a Cs<sup>+</sup> beam and a glycerine matrix.

**2-Deoxy-20,26-dihydroxyecdysone** (1),  $C_{27}H_{44}O_7$ , M.W. 480, UV spectrum (EtOH,  $\lambda_{max}$ , nm, log  $\epsilon$ ): 242 (4.01).

$$\begin{split} \text{HPLC: } t_{\text{R}} \ 23.7 \ [\text{Zorbax-Sil}, \ \text{CH}_2\text{Cl}_2: (\text{CH}_3)_2\text{CHOH:} H_2\text{O}, \ 125:40:3]. \ \text{Mass spectrum (CI, NH_3)} \ (\textit{m/z}, \textit{I}_{\text{rel}}, \ \%): \ 498 \ (81) \\ [\text{M} + \text{H} + \text{NH}_3]^+, \ 481 \ (54) \ [\text{M} + \text{H}]^+, \ 480 \ (100) \ [\text{M}]^+, \ 463 \ (10.5) \ [\text{M} + \text{H} - \text{H}_2\text{O}]^+, \ 445 \ (4) \ [\text{M} + \text{H} - 2\text{H}_2\text{O}]^+. \end{split}$$

PMR spectrum (D<sub>2</sub>O, δ, ppm, J/Hz): 0.86 (3H, s, C<sub>18</sub>-Me), 0.98 (3H, br.s, w<sub>1/2</sub> = 4, C<sub>19</sub>-Me), 1.16 (3H, s, C<sub>27</sub>-Me), 1.24 (3H, s, C<sub>21</sub>-Me), 2.33 (t, J = 9.7, H-17), 2.39 (br.dd, J = 12.5, J = 3.4, H-5), 3.15 (br.s, w<sub>1/2</sub> = 25, H-9), 3.44 (d, J = 10.5, H-22), 3.45 [s, CH<sub>2</sub>OH(26)], 5.96 (d, H-7, J = 2.2), 4.10 (br.s, w<sub>1/2</sub> = 20, H-3).

**2-Deoxyecdysone 22** $\beta$ **-D-glycoside** (2), C<sub>33</sub>H<sub>54</sub>O<sub>10</sub>, M.W. 610, HPLC: t<sub>R</sub> 23.5 [Zorbax-Sil, CH<sub>2</sub>Cl<sub>2</sub>:(CH<sub>3</sub>)<sub>2</sub>CHOH:H<sub>2</sub>O, 125:40:3].

Mass spectrum (CI, NH<sub>3</sub>) (m/z,  $I_{rel}$ , %): 628 (100) [M + H + NH<sub>3</sub>]<sup>+</sup>, 611 (18) [M + H]<sup>+</sup>, 610 (41) [M]<sup>+</sup>, 593 (7) [M + H - H<sub>2</sub>O]<sup>+</sup>.

PMR spectrum (D<sub>2</sub>O,  $\delta$ , ppm, J/Hz): 0.74 (3H, s, C<sub>18</sub>-Me), 0.956 (3H, d, J = 6.8, C<sub>21</sub>-Me), 0.990 (3H, br.s, w<sub>1/2</sub> = 4, C<sub>19</sub>-Me), 1.238 (3H, s, C<sub>26</sub>-Me), 1.243 (3H, s, C<sub>27</sub>-Me), 2.18 (m, H-17), 2.41 (dd, J = 12.3, J = 3.2, H-5), 3.14 (br.m, w<sub>1/2</sub> = 25, H-9), 3.73 (br.d, J = 10.5, H-22), 4.10 (br.s, w<sub>1/2</sub> = 23, H-3), 5.97 (d, J = 2.1, H-7), 4.53 (d, J = 8, H-1'), 3.29 (dd, J = 9.1, J = 8.1, H-2'), 3.48 (t, J = 9.3, H-3'), 3.38 (t, J = 9.3, H-4'), 3.45 (m, H-5'), 3.70 (dd, J = 12.4, J = 6.2, H-6'), 3.89 (dd, J = 12.3, J = 2.3, H-6').

<sup>13</sup>C NMR (C<sub>5</sub>D<sub>5</sub>N, δ, ppm): 101.8 (C-1).

**2-Deoxypolipodine B**  $3\beta$ -D-glycoside (3), C<sub>33</sub>H<sub>54</sub>O<sub>12</sub>, M.W. 642. HPLC: t<sub>R</sub> 38.0 [Zorbax-Sil, CH<sub>2</sub>Cl<sub>2</sub>:(CH<sub>3</sub>)<sub>2</sub>CHOH:H<sub>2</sub>O, 125:40:3].

Mass spectrum (CI, NH<sub>3</sub>) (m/z,  $I_{rel}$ , %): 480 (9) [M - sugar]<sup>+</sup>, 463 (40) [M + H - sugar - H<sub>2</sub>O]<sup>+</sup>, 180 (46) [sugar]<sup>+</sup>.

PMR spectrum (D<sub>2</sub>O, δ, ppm, J/Hz): 0.875 (3H, s, C<sub>18</sub>-Me), 0.905 (3H, s, C<sub>19</sub>-Me), 1.221 (3H, s, C<sub>26</sub>-Me), 1.233 (3H, s, C<sub>27</sub>-Me), 3.44 (d, J = 10.5, H-22), 2.32 (t, J = 9.3, H-17), 3.243 (m, H-9), 4.31 (br.s, w<sub>1/2</sub> = 12, H-3), 5.99 (d, J = 2.1, H-7), 4.56 (d, J = 8, H-1'), 3.30 (dd, J = 9, J = 8, H-2'), 3.51 (t, J = 9.3, H-3'), 3.39 (t, J = 9.3, H-4'), 3.45 (m, H-5'), 3.71 (dd, J = 12.4, J = 5.9, H-6'), 3.90 (dd, J = 12.3, J = 2, H-6').

## REFERENCES

- 1. N. K. Abubakirov, *Khim. Prir. Soedin.*, 685 (1981).
- 2. Z. Saatov, Author's Abstract of a Doctoral Dissertation in Chemical Sciences, Tashkent (1993).
- 3. J.-P. Girault, M. Bathori, E. Varga, K. Szendrei, and R. Lafont, J. Nat. Prod., 53, 279 (1990).
- 4. L. N. Zibareva, Rastit. Resur., 35, No. 1, 79 (1999).
- 5. L. Zibareva, Arch. Insect. Biochem. Physiol., 43, 1 (2000).
- 6. L. N. Zibareva, Author's Abstract of a Doctoral Dissertation in Chemical Sciences, Novosibirsk (2003).
- 7. L. N. Zibareva, Rastit. Resur., 89 (1997).
- L. N. Zibareva, V. I. Eremina, and P. V. Zibarev, Pat. No. 2,082,168; MKI 6 G 01 N 33/50, 30/02, 30/90. No. 94002629/13; Filed Jan. 26, 1994; Issued June 20, 1997; *Byull.* No. 17, Priority Jan. 26, 1994.
- 9. Z. Saatov, M. B. Gorovits, N. D. Abdullaev, B. Z. Usmanov, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 738 (1981).
- 10. Z. Saatov, M. B. Gorovits, N. D. Abdullaev, B. Z. Usmanov, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 611 (1982).
- 11. Z. Saatov, M. B. Gorovits, N. D. Abdullaev, B. Z. Usmanov, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 211 (1982).
- 12. Z. Saatov, N. D. Abdullaev, M. B. Gorovits, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 741 (1984).
- 13. Z. Saatov, N. D. Abdullaev, M. B. Gorovits, and N. K. Abubakirov, Khim. Prir. Soedin., 323 (1986).
- 14. N. Sh. Ramazanov, S. A. Sultanov, Z. Saatov, and A. M. Nigmatullaev, *Khim. Prir. Soedin.*, 718 (1997).
- 15. N. Z. Mamadalieva, L. N. Zibareva, N. Edvard-Todeschi, J.-P. Girault, A. Maria, N. Sh. Ramazanov, Z. Saatov, and R. Lafont, *Collect. Czech. Chem. Commun.*, **69**, 1675 (2004).